鉅大LARGE | 點擊量:2648次 | 2019年05月10日
全固態電池存在的問題
固態電池是被看做下一代最有希望替代液態鋰電池的動力來源。固態電池與現有量產的動力電池相比,采用了固態的電解質。不同于液態電解質易燃的特征,固態電解質不可燃、無腐蝕、不揮發、不存在漏液問題,在高壓下更穩定,允許電池在高電壓下工作,這樣就會很大程度地提高鋰電池的比能量和安全性。
一、全固態電池存在的問題
目前限制全固態鋰電池應用的主要問題是電池的能量及功率密度低,而決定電池能量及功率密度的主要因素包括電極材料、電解質材料和二者的界面的特性。在無機化學領域,眾多大師已經將無機電解質研究了個遍,這為鋰電池電解質的選擇打下了結實的基礎。
例如,最近無機硫化物固態電解質就因為其高的離子電導率而備受關注。其離子電導率可以與有機液態電解質相媲美了。但是,全固態電池中的界面問題一直未能有效解決。
界面問題:
充電溫度:0~45℃
-放電溫度:-40~+55℃
-40℃最大放電倍率:1C
-40℃ 0.5放電容量保持率≥70%
電解質由液態換成固體之后,鋰電池體系由電極材料-電解液的固液界面向電極材料-固態電解質的固固界面轉化。區別在于,固固之間無潤濕性,其界面的更易形成更高接觸電阻。固體電解質/電極界面存在難以充分接觸、組分相互擴散甚至反應及形成空間電荷層等現象,造成全固態鋰離子電池內阻急劇增大、電池循環性能變差。
關于如何在活物質和固態電解質之間建立緊密的結合,目前有三種方式:
一是利用脈沖激光沉積,該方法雖然效果較好但是處于實驗室階段,而且想要用此種方式進行規模化生產時不切實際的。
二是行星球磨技術,利用該種方式雖然可以實現大規模量產,但是粉體之間相互摩擦,顆粒破壞不可避免,材料結構的破壞對電池的負面影響不言自明。
三是熱壓技術,熱處理會破壞固態電解質,所以目前還沒有特別理想的方式。